

New Constraints on the Origins of Hα Filaments in Cool Core Groups and Clusters

Michael McDonald
PhD Student, University of Maryland

With: Sylvain Veilleux, Richard Mushotzky

Agenda

- Background & Motivation
 - Cooling flow clusters
 - Maryland-Magellan
 Tunable Filter

- Results
 - H α filaments in cooling flow clusters
 - Cooling flow groups
- Interpretation
 - New constraints for cluster formation simulations
- Conclusions & Future Work

Cooling Flow Clusters

 Massive galaxy clusters have L_X high enough in the central region that the X-ray plasma should cool radiatively in less than a Hubble time.

$$\dot{M} \sim \frac{2L\mu m}{5kT}$$

- Implies cooling rates of
 ~ 100-1000 M_☉/yr
 - Expect to see plenty of cool gas and star formation
 - The "cooling flow problem"

The Cooling Flow Problem

Solutions:

- Assume that energy is injected into the core, effectively balancing the energy losses due to radiative cooling.
 - e.g. AGN feedback, mergers, conduction from outer layers...
 - Estimated cooling rates drop by orders of magnitude, to better match the observed values of 1-10 $M_{☉}/yr$
- Look for other phases the cooling gas could be in.
 - Neutral gas (radio)
 - Cold molecular gas (mm)
 - Warm molecular gas (IR)
 - lonized gas (optical)
 - Young stars (UV)

Hα Emission in Cool Cores

- The presence of warm, ionized gas has been noted in the cores of several cooling flow clusters to date.
 - Typically radial filaments centered on the BCG
 - Surface brightness is too high by orders of magnitude to be ICM cooling through 10⁴ K.
 - Unanswered questions:
 - Where did the gas come from?
 - What is the heating source?

Perseus A, Conselice et al. 2001

Hα Emission in Cool Cores

- Potential sources of gas:
 - Stripped from infalling, gas-rich galaxies
 - X-ray cooling flow
 - Buoyant radio bubbles
- Potential sources of heat:
 - Cosmic ray ionization
 - AGN
 - Young stellar populations
 - Conduction from ICM
 - Ionization by ICM X-rays

Perseus A, Conselice et al. 2001

Hα Emission in Cool Cores

- Very difficult to argue in favor of a specific formation scheme with so few well-resolved examples (Perseus A, M87, ...)
- Ideally, would like a large sample of cooling and non-cooling clusters with high-resolution $H\alpha$ imaging
 - Narrow-band filters limits redshift range to < 0.03
 - Spectroscopic surveys limits field of view to central few kpc
 - SDSS fiber is 3" in diameter → only looking at AGN
 - IFU surveys typically hard to get both high spatial resolution AND sufficient coverage
 - → Tunable filter surveys

Tunable Filters

- Low spectral resolution ($\Delta\lambda \sim 10\text{Å}$)
 - Narrow band filter tunable both in width and central λ
 - Bandwidth is only slightly larger than the width of a typical emission line
 - Isolate a single line, such as $H\alpha$
 - Combines excellent spatial resolution and coverage!

The Maryland-Magellan Tunable Filter

- PI: Sylvain Veilleux
 - 3 nights/yr guaranteed
- On Baade 6.5m telescope in Chile
 - DIQ ~ 0.5"

- ~5000-9200Å
- Bandwidth tuning
 - ~6-20 Å
- Largest FOV of any FP in operation (27'x27')

Science Goals

- Census of $H\alpha$ filaments in cooling flow clusters
 - How common are they? What is the typical morphology?
 - How does $H\alpha$ emission correlate with other cluster properties?
 - e.g. global/cooling X-ray properties, AGN, BCG, etc.
 - How does the presence of $H\alpha$ emission depend on environment?
- Important questions:
 - What are the origins of the gas in the ionized filaments?
 - What are the primary sources of ionization?

A Pilot Study – Abell 1795

A Pilot Study – Abell 1795

Comparing UV data from HST with MMTF Hα imaging

on a pixel-to-pixel basis suggests that star formation may be responsible for the bulk of the observed H α

Caveats!

- High [N II]/Hα ratios
- Several regions with UV and no accompanying Hα, or vice versa.

McDonald & Veilleux (2009)

A Multiwavelength Database

- Sample of 23 galaxy clusters, drawn from White et al. (1997)
- Covering a full order of magnitude in T_X , M_X , L_X , dM/dt
- Excellent wavelength coverage:
 - 21/23 have CXO X-ray imaging
 - 19/23 have GALEX/XMM-OM near-UV imaging
 - 23/23 have \sim r-band and H α imaging
 - 23/23 have 2MASS near-IR imaging
 - 18/23 have VLA 1.4 GHz fluxes
- Supplemented with 10 groups, drawn from Sun et al. (2009)
 - Increase baselines by order of magnitude in T_X, M_X

Results – $H\alpha$ in Clusters

- Sample can be divided into three morphological classes
 - I. Thin, extended filaments
 - II. Nuclear, slightly extended emission
 - III. No emission

In the Context of Per A...

- The complex morphology of the ionized filaments in Perseus
 A is typical of the clusters in our sample
 - Larger distances make it very difficult to resolve filaments and see low surface brightness features

Results – $H\alpha$ in Clusters

McDonald, Veilleux, Rupke and Mushotzky 2010

Results – NUV vs Hα

Using GALEX & XMM-OM near-UV imaging, can examine

relationship between UV and $H\alpha$ emission.

- Must remove UV contribution from older stars, via 2MASS J-band imaging
- Strong deviations from Kennicutt-like star formation
 - Could be due to burst-like star formation
 - More probably, the Hα emission is not linked to star formation

McDonald et al. 2010a

Results – NUV vs Hα

Without higher resolution UV imaging, too difficult to say

whether star formation is a viable heat source

- Ideally, would like to look at UV/Halpha ratio pixel-by-pixel as we did for Abell1795
- Will address this in McDonald et al. 2011 with high-resolution UV imaging from HST for 21 clusters.

McDonald et al. 2010a

- Using archival X-ray data, we can look for a link between the Hα emission and the properties of the cluster/group core.
 - Red points: Clusters
 Blue points: Groups
 - Strong correlations between Hα luminosity and:
 - ICM temperature
 - Cooling rate (dM/dt)
 - Specific entropy

McDonald et al. 2010b

- Hard limit on the formation of optical filaments at T_(<100kpc) = 4.5 keV
- The Hα luminosity is an order of magnitude too high to be single recombination
- Also, an order of magnitude too low to be star formation induced by cooling flow.

McDonald et al. 2010b

- The radius at which the ICM is cooling in less than 5 Gyr is also correlated with the maximum radius of $H\alpha$ emission.
 - Filaments never extend beyond the cluster cooling radius.
 - Suggests a link between the Hα filaments and the X-ray cooling flow.

McDonald et al. 2010b

• Utilizing the high-spatial resolution of CXO, we can extract X-ray spectra on- and off-filament.

- Extract spectra in four regions:
 - On-filament

 - $0.3R_{H\alpha} < r < R_{H\alpha}$ $0.3R_{H\alpha} < r < R_{H\alpha}$
- Off-filament
 - $o < r < R_{H\alpha}$ $o < r < R_{H\alpha}$

- Compared to surrounding ICM, on-filament gas is:
 - Colder
 - More dense
 - Cooling MUCH faster (10x)
- Independent of:
 - Filament geometry
 - Radial binning
 - Total mass

McDonald et al. 2010b

Summary of Results

- Soft X-ray and $H\alpha$ morphologies are similar
- The X-ray cooling rate and $H\alpha$ luminosity are correlated
- The optical filaments extend to the X-ray cooling radius, but no further
- The cooling time of the ICM spatially coincident with the H α emission is 10x shorter than the surrounding ICM
 - \rightarrow The H α emission is linked to the cooling ICM!

Interpretation of Results

- Sources of gas in filaments
 - Starburst/AGN driven wind
 - ➤ Presence of filaments is not dependent on the presence of an AGN
 - **X** Filaments are much too thin
 - Stripped from merger/interaction
 - ★ Presence of filaments is not dependent on the presence of near neighbour
 - ★ Would expect to trace the gas to the galaxy being stripped, in some cases
 - Sloshing of cool material about cluster core
 - ★ Does not require emission to be centered on BCG
 - ➤ Would expect to see 'fronts' of ionization, perpendicular to motion

Interpretation of Results

- Two viable mechanisms for producing $H\alpha$ filaments
 - Buoyant radio bubbles
 - **Pro**: models produce thin, radial filaments
 - **Pro**: radio-loud BCGs tend to have Hα emission
 - Con: hard to justify several filaments with different directions and similar surface brightness
 - Con: X-ray-Hα correlations should be secondary to BCG/AGN-Hα correlations
 - Radially-infalling X-ray cooling flow
 - **Pro:** several X-ray-Hα correlations
 - **Pro:** models produce thin, radial filaments
 - **Pro**: only see H α in systems with cooling flows
 - Con: should we see $H\alpha$ emission detached from center (start of infall)? t_{dyn} vs t_{cool} ?

Revaz et al. (2008)

Sharma et al. (2010)

Ionization Source

- Regardless of how the cool gas arrives in filaments, we require a heat source to produce the high observed $H\alpha$ surface brightness
 - Viable sources of heating include:
 - Photoionization by young stars
 - Probably not dominant in most cases
 - Cosmic ray heating
 - AGN is excellent source of cosmic rays, plus would explain the AGN-H α correlation
 - Conduction from ICM
 - Would be consistent with the strong link between the $H\alpha$ and X-ray emission
 - Need optical spectra of emission-line gas in order to make progress on this problem (McDonald et al 2011 in prep)

New Constraints for Models

- Typically very thin, extended, radial filaments
 - Average length/width ratios of ~ 35
- In general filaments are not heated by star formation
 - Need to explore other methods such as conduction, cosmic rays, drag heating, etc.
- Strong correlations between $H\alpha$ and X-ray
 - $R_{H\alpha} \le R_{cool}$
 - T_{<100kpc} < 4.5 keV
 - $L_{h\alpha}$ correlates with dM/dt, K_{50kpc}
- X-ray cooling is strongly enhanced in $H\alpha$ filaments
 - t_{cool} (out) ~ 10 × t_{cool} (in)
- Optical filaments tend to form in low-entropy systems with relatively high gas mass fractions
 - No obvious correlation with global mass/temperature

Conclusions

- Warm, ionized gas (H α) is present in the cores of a large (2/3) fraction of cooling flow clusters
 - 50% in filaments, 50% nuclear
- The $H\alpha$ emission is strongly correlated with the cooling ICM
 - Suggests that we are observing directly the gas that has cooled out of the X-ray
- Star formation is, in general, an inadequate source of ionization in the filaments
 - Conduction or cosmic rays seem more promising
- The formation of $H\alpha$ filaments is independent of the global mass/ temperature of the group/cluster
 - Amount of feedback scales with system mass to balance cooling
 - The cooling efficiency is highest in low-mass systems

